

Recall:

① Bilinear forms \rightarrow Gram matrices

Isometric classes

Congruence classes

② Symmetric forms \rightarrow Symmetric matrices

③ Sylvester

$$A \sim P^T A P = \begin{bmatrix} I_p & \\ & -I_q & \\ & & 0 \end{bmatrix}$$

p positive index of inertia.

q negative index of inertia

Uniqueness uses positive definiteness.

Defn (positive definite) $V, \langle \cdot, \cdot \rangle$

symmetric form is positive definite iff

$\forall v \neq 0 \in V, \langle v, v \rangle > 0$.

($\exists r \quad \langle v, v \rangle \geq 0 \quad \forall v \in V$ and
equality holds iff $v = 0$)

Denote by $\langle \cdot, \cdot \rangle > 0$

Ex.: $\mathbb{R}^n, \langle \cdot, \cdot \rangle$ standard

Prop: $V, \langle \cdot, \cdot \rangle$ positive definite iff

$(\dim V \text{ even}) \quad \dim V = \text{positive index of}$
 $\underbrace{\phantom{\dim V = \text{positive index of}}}_{\text{inertia}}$

In the proof of uniqueness of signature.

positive index = $\max \{ \dim W \mid W \subset V \text{ subspace}$
 $\langle \cdot, \cdot \rangle|_W > 0 \}$

This is a characterization of signature
purely by isometry class of $(V, \langle \cdot, \cdot \rangle)$

Similarly, define negative definiteness.

Defn (negative definite)

$V, \langle \cdot, \cdot \rangle$ symmetric form.

$\langle \cdot, \cdot \rangle < 0$ iff $\forall v \neq 0 \in V, \langle v, v \rangle < 0$

Some related defn:

Defn (positive semidefinite)

$\langle \cdot, \cdot \rangle \geq 0$ iff $\forall v \in V, \langle v, v \rangle \geq 0$

Defn (negative semidefinite)

$\langle \cdot, \cdot \rangle \leq 0$ iff $\forall v \in V, \langle v, v \rangle \leq 0$

Defn: $(V, \langle \cdot, \cdot \rangle)$ with $\langle \cdot, \cdot \rangle \geq 0$
 is called Euclidean space, or
 inner product space

Prop: $\dim V = n$, inner product space, then
 $(V, \langle \cdot, \cdot \rangle) \cong (R^n, \langle \cdot, \cdot \rangle_{\text{standard}})$

Ex: $P_{\leq n}(R) = \{ f \in R[x] \mid \deg f \leq n \}$
 $\langle f, g \rangle = \int_0^1 f g \, dx$

$\langle \cdot, \cdot \rangle \geq 0$.

$P_{\leq n}(R)$ has basis $1, x, x^2, \dots, x^n$

Gram matrix under this basis $\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 2 & \dots & n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & n & \dots & n^2 \end{pmatrix}$

flow to find more natural basis

Gram-Schmidt process.

$V, \langle \cdot, \cdot \rangle$ inner product space.

$B: V_1, \dots, V_n$ basis, try to find basis $C: w_1, \dots, w_n$, s.t.

$$G_{\langle \cdot, \cdot \rangle, C} = \tilde{I}_n \quad \text{y}$$

$$\text{or } \langle w_i, w_j \rangle = \delta_{ij} \quad \text{y}$$

Defn (Orthonormal basis)

Such a basis is called orthonormal basis.

Idea: use the modification method in the proof of Sylvester theorem.

$$v_1 \neq 0 \Rightarrow \langle v_1, v_1 \rangle \neq 0$$

Define $w_1 = \frac{1}{\sqrt{\langle v_1, v_1 \rangle}} v_1$, then

$$\langle w_1, w_1 \rangle = 1$$

and $\text{span}(w_1) = \text{span}(v_1)$

$\tilde{w}_2 = v_2 - \langle v_2, w_1 \rangle w_1$, then

$$\langle \tilde{w}_2, w_1 \rangle = 0 \quad \text{and}$$

$$\text{span}(w_1, \tilde{w}_2) = \text{span}(v_1, v_2)$$

so $\tilde{w}_2 \neq 0$,

Define $w_2 = \frac{1}{\sqrt{\langle \tilde{w}_2, \tilde{w}_2 \rangle}} \tilde{w}_2$

$$\langle w_1, w_2 \rangle = 0 \quad \langle w_2, w_2 \rangle = 1$$

and $\text{span}(w_1, w_2) = \text{span}(v_1, v_2)$

1) Define $\tilde{w}_3 = v_3 - \langle v_3, w_1 \rangle w_1 - \langle v_3, w_2 \rangle w_2$

$$\Rightarrow \langle \tilde{w}_3, w_1 \rangle = 0, \quad \langle \tilde{w}_3, w_2 \rangle = 0$$

$$\text{Span}(\tilde{w}_3, w_1, w_2) = \text{Span}(v_3, w_1, w_2)$$

$$\Rightarrow \tilde{w}_3 \neq v \quad \Rightarrow \text{Span}(v_3, v_1, v_2)$$

Define $w_3 = \frac{1}{\sqrt{\langle \tilde{w}_3, \tilde{w}_3 \rangle}} \tilde{w}_3$

$$\langle w_3, w_1 \rangle = 0, \quad \langle w_3, w_2 \rangle = 0$$

$$\langle w_3, w_3 \rangle = 1$$

$$\text{Span}(w_1, w_2, w_3) = \text{Span}(v_1, v_2, v_3)$$

Inductively define

$$\tilde{w}_i = v_i - \sum_{j=1}^{i-1} \langle v_i, w_j \rangle w_j$$

$$\text{and } w_i = \frac{1}{\sqrt{\langle \tilde{w}_i, \tilde{w}_i \rangle}} \tilde{w}_i$$

then w_1, \dots, w_n orthonormal and

$$\text{Span}(w_1, \dots, w_i) = \text{Span}(v_1, \dots, v_i)$$

In terms of transition matrix

$$(w_1, \dots, w_n) = (v_1, \dots, v_n) \cdot P$$

$$P = \begin{bmatrix} a_1 & & & & & \\ 0 & a_2 & & & & \\ 0 & 0 & \ddots & & & \\ \vdots & \vdots & & \ddots & & \\ 0 & 0 & & & \ddots & \\ & & & & & a_n \end{bmatrix}$$

$$a_i > 0$$

P upper triangular

because

flag structure is preserved

a sequence of subspaces.

and

$$(v_1 \dots v_n) = (w_1 \dots w_n) \cdot \underbrace{P^{-1}}_{\downarrow}$$

upper triangular
with positive diagonal
elements.

Matrix version. (QR decomposition)

Defn (orthogonal matrix)

$Q \in M_n(\mathbb{R})$ is called orthogonal matrix

iff column vectors of Q form an

orthonormal basis of \mathbb{R}^n , \Rightarrow

$$\Leftrightarrow Q^T Q = I_n \quad (\text{by } \langle x, y \rangle = x^T y)$$

$\Leftrightarrow Q Q^T = I_n$ (by left inverse)
 $\qquad\qquad\qquad = \text{right inverse}$

\Leftrightarrow Row vectors of Q form an orthonormal basis

Thm (QR decomposition)

$\forall A \in GL(n, \mathbb{R})$, $\exists Q$ orthogonal matrix

and R upper triangular matrix with positive diagonal entries, s.t.

$$A = Q \cdot R$$

If: $A = (v_1 \dots v_n)$ form a basis of \mathbb{R}^n iff A is invertible.

G-S process \Rightarrow

$$(v_1, \dots, v_n) = (w_1, \dots, w_n) \cdot R$$

w_1, \dots, w_n orthonormal basis

so

$$A = Q \cdot R \quad . \quad \square$$

Uniqueness.

$$\text{If } A = Q_1 R_1$$

$$= Q_2 R_2$$

two QR decompositions,

$$Q_1 = Q_2 ?$$

$$R_1 = R_2 ?$$

(Homework)